US009479620B2

a2 United States Patent

10) Patent No.: US 9,479,620 B2

Levy et al. 45) Date of Patent: Oct. 25,2016
(54) PACKET PARSING AND KEY GENERATION 2008/0095149 Al* 4/2008 Daicocoooennn. HO4L 49/3009
IN A NETWORK DEVICE 370/389
2008/0114887 Al 5/2008 Bryers et al.
(71) Applicant: Marvell Israel (M.L.S.L) Ltd., 2008/0232374 Al* 9/2008 Kopelman HO04L. 69/22
2010/0150158 Al 6/2010 Cathey et al.
(72) Inventors: Gil Levy, Hod Hasharon (IL); Aron 2011/0149966 Al 6/2011 Pope et al.
Wohlgemuth, Givat Shmuel (IL) 2012/0002546 Al 1/2012 Sundararaman et al.
(73) Assignee: Marvell World Trade Ltd., St. (Continued)
Michael (BB)
. . Lo . FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 WO 99/07180 A2 2/1999
U.S.C. 154(b) by 54 days.
(21) Appl. No.: 14/516,500 OTHER PUBLICATIONS
(22) Filed: Oct. 16, 2014 U.S. Appl. No. 14/092,521, filed Nov. 27, 2013.
. L U.S. Appl. No. 14/482,980, filed Sep. 10, 2014.
(65) Prior Publication Data Shpiner et al., “Reducing the Reordering Delay in Multi-Core
US 2015/0110113 Al Apr. 23, 2015 Network Processors”, Technical Report TR12-01, Com net,
T Technion, Israel, Jan. 2012, 12 pages.
U.S. Appl. No. 14/574,088, Levy et al., “Increasing Packet Pro-
Related U.S. Application Data cessing Rate in a Network Device,” filed Dec. 17, 2014.
.. .. (Continued)
(60) Provisional application No. 61/892,105, filed on Oct.
17, 2013.
’ Primary Examiner — Anh-Vu Ly
(51) Imt.CL
HO4L 12/56 (2006.01) (57) ABSTRACT
HO4IL 29/06 (2006.01) A packet being processed by a network device is parsed by
Ho4L 12/741 (2013.01) a programmable processing unit executing computer read-
(52) US. CL able instructions stored in a non-transitory computer read-
CPC . HO4L 69/22 (2013.01); HO4L 45/745 able storage medium. Parsing the packet includes identify-
(2013.01); HO4L 69/18 (2013.01) ing one or more protocol layers within a header of the
(58) Field of Classification Search packet, identifying respective locations of protocol headers
None within the header of the packet, and providing the respective
See application file for complete search history. identified locations of protocol headers within the header of
the packet to a hardware key generator block. A lookup key
(56) References Cited corresponding to the packet is generated by the key genera-
tor block using the respective identified locations. Generat-
U.S. PATENT DOCUMENTS ing the lookup key includes extracting, using an identified
_ location of a protocol header, one or more fields from the
6,665,725 B1* 12/2003 Dietz GOG6F 15/730(;223 corresponding protocol header. The lookup key is provided
7.924.860 Bl 42011 Frailong et al. toa loqkup engine. A lookup operation with respect to the
S 111690 B2 2/2012 Hussain ef al packet is performed by the lookup engine and based on the
2002/0163909 AL* 11/2002 Sarkinen HO4Q 11/04 lookup key.
370/386

2003/0210702 Al 11/2003 Kendall

20 Claims, 8 Drawing Sheets

Header
Locations

L

Network Device 10
Packet Procsssor 11

Parsing

Engine

0

General

" - Purpose

Pmcanﬂg Unit ll;r;\::azl it

"

Data Memory 12

Header Fields.

Profie Table
2
Key Generator Engina
Block 2

r-O0 OO0 og

g s e R

US 9,479,620 B2
Page 2

(56)

2012/0177047
2014/0169378
2014/0177470
2014/0192815
2015/0071079
2015/0113190
2015/0172188

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al

7/2012
6/2014
6/2014
7/2014
3/2015
4/2015
6/2015

Roitshtein
Shumsky et al.
Roitshtein et al.
Shumsky et al.
Kadosh et al.

Wohlgemuth et al.

Levy et al.

OTHER PUBLICATIONS
U.S. Appl. No. 14/610,834, Levy et al., “Packet Distribution with
Prefetch in a Parallel Processing Network Device,” filed Jan. 30,
2015.
International Search Report and Written Opinion in International
Application No. PCT/IB2014/002623, dated Feb. 23, 2015 (9
pages).
Wohlgemuth, et al, “Processing Concurrency in a Network Device,”
U.S. Appl. No. 14/516,529, filed Oct. 16, 2014.

* cited by examiner

US 9,479,620 B2

Sheet 1 of 8

Oct. 25, 2016

U.S. Patent

b "OId

L I

(I I O <=

Ve
auibug

spield JepesH

Aoy

o1
%0019
Jojelauss) Aay

-¢c

LRcRe

F44
sioyouy
asoding
[elausn)

7T Aowe eleq

0c
S[qe] sjuoid

sulbug
Buisieq

suolje20]
lapesH
Jehe
|od0j01d

12
jun Buisseooid

A

[T AMowsiy welboid

T Jossao0id Jeyoed

DT @olAsd MIOMISN

US 9,479,620 B2

Sheet 2 of 8

Oct. 25, 2016

U.S. Patent

16 N opeeH
r JepeaH A
peojAed [000j0id M _o%wwwn__._ z _owwm%n__._ A _owﬂﬂm_._ X
az oid | | | | | | - 05
/ / / /
86 96 ¥6 (4
LL JepesH
[4 / A A
peojAed Japeay 401 JapesH d| JBpEBH Joweylg JepesH T1IML JOpesH lsuisylg
oz 014 | | | | | | |
08 7 8. 7/ 9. 7 vL / 22 7
19 JepesH
4 / A \
peojfed lapeay 4an JapedH d| JapesH §1dN JopesH jewayig
gz ol | | | | | | o
7 / J /
89 99 9 29
1S JapeaH
A A
r)
peolkeq Jepeay 4oL JopesH dl JspeaH jouseylg
vZ ‘OId | | | |-
7 J 7
9g 125 4]

US 9,479,620 B2

Sheet 3 of 8

Oct. 25, 2016

U.S. Patent

9¢€ OId g€ "Old

7 wbusT 7 Joyouy 7 ssaippe oseq 7 7 whusT 7 19840 7 Joyouy 7 ssa.ppe aseq 7
J/ S/ / / J/ J/ /
8G¢E vse A 8G¢ 8G¢ vGe [4%
\
om“ 0g6e

Ve "Old

pleld dIS
Jo 2¥hg 1844

/

90¢ 2l =19540

IspeaH d|
10 3G 18114

J T
19%0ed

voe 8l = 207
Jo e1kg 1814

/
Z0e

A
v

$914Q ¥ = WIPIM Alowal

00€

US 9,479,620 B2

Sheet 4 of 8

Oct. 25, 2016

U.S. Patent

SSAlppy uoneudlopu| _
PIleA 1ON Aoy Jo | plai4 Aidoy BloUeD) 1=1 ||/>>-N§
SSOIPPY UOREBLLIO| _
Ay Jo Z pisld Aay 4o | pisld Aidoy . =T
w-gltv
p— 80F
K&y 1o u plald hox Ao =7 =~
: J0 [-U pleld J0 Z-u piBld N-ZLY
Aoy Jo G pleid A8y Jo t p1ei4 Aoy Jo ¢ pai4 0=1 T
ZCly
SSaIppy UONEBLLLIO| _
A8y jo Z pIald A8y jo | plal4 Aidon ouss) 0=1 —
\ \ \ \ -2l
80¥ 90¥ vor zoy

oov

v "Old

-+ zZ-(Lt

A X0}

SMOI Y
\ ‘Anug

<+ |-0l¥

US 9,479,620 B2

Sheet 5 of 8

Oct. 25, 2016

U.S. Patent

I I O I Y

OO0 OO0 OO0 <=

| BTG Jeouefeg
|UM JBPIOD,
029 Jun Jspiosy peo [J9hquysiq
Y
4
X905 ¥IS 505 005
aulbuzg | %009 Ndd Ndd
lojeisues
Aoy
oIS
(dva) [] RN
juiod
ss BTG sioyouy
- w:m_mucum_c asodind [eleuss
aulbug
7 gIS HuNn 7
— T Buissaooid
q90S I3 809 Ndd Bp0S Ndd
auIBug Jowapy
welbold _
paJeys 70S (Ndd) sepoN Buisseoold 19x0ed
05 1-G0S Odd
auibug
€-50S Odd
950G saulbug - Odd 7
Jojesa|ao0y 205 (0dd) sisisnio Buisssooid 1evoed

T0T 10ss200.1d 193oed

005 201no(YOMION

G "Old

U.S. Patent Oct. 25, 2016

Profile Index

Sheet 6 of 8

>

Response

FIG. 6

Engines
Access
Point (EAP)
600

Key
Generation
612

US 9,479,620 B2

Request
to Engine

Profile
Table
610

Cluster
Distributor
602

>

Response
from Engine

Cluster
Accelerators
604

Cluster
Data
Memory
606

US 9,479,620 B2

Sheet 7 of 8

Oct. 25, 2016

U.S. Patent

sanjeA Z "OIld
Plel4 JepesH
\J
00z
Jinsay Kowsp ejeq
u Joyouy —H_ w pjetd —H_
asuodsay jInsay
¢ dopuy _H_ Zple _H_
suoleoso] JepesH
- | Joyouy | pielg Jaken jooojold -
Xapu| 9|1j0id _H_ _H_ 0.

IIT sioyouy
ssodind |essusn

BTZ spleid
8|1J0ld BPLIBAD

80Z

(dV¥N) Ju10d SS800Y YIOM)ON

Hun Buisseoold

¥0Z
SINPON
yojejeid
uoljonsu|

U.S. Patent Oct. 25, 2016 Sheet 8 of 8 US 9,479,620 B2

804

FIG. 8 800 Ve

p ' Identify one or more protocol
- layers within a header of the
. packet.

p 802 .- 506
/ ' s

Parse a packet by a packet processing unit Identify respective location of
executing computer readable instructions protocol headers corresponding

stored in a memory. to respective one or more
identified protocol layers.

l 808
N /

AN Provide the respective identified
. locations to key generator block.

e 812
_.-""| Extract, using an identified
7 location of a protocol header, one
y , 810 -7 or more fields from the
corresponding protocol header
Generate, by the key generator block and 814
using the respective identified locations, a i '
key corresponding to the packet
RN Generate the key to include the
816 Y one or more fields
i I
Provide the key to a lookup engine
818

y /4

Determine, by the lookup engine and based
on the key, a processing operation to be
performed with respect to the packet

US 9,479,620 B2

1
PACKET PARSING AND KEY GENERATION
IN ANETWORK DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

This disclosure claims the benefit of U.S. Provisional
Patent Application No. 61/892,105, filed Oct. 17, 2013,
entitled “High Performance Soft Parsing and Key Genera-
tion in a Programmable Packet Processor Architecture,” the
disclosure of which is hereby expressly incorporated herein
by reference in its entirety.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to network
devices such as switches, routers, and edge devices, and
more particularly to systems and methods for processing
communication packets in such devices.

BACKGROUND

The background description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Work of the presently named inventors, to the extent it
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time of filing, are neither expressly nor impliedly admit-
ted as prior art against the present disclosure.

Some network devices, such as network switches, routers,
edge devices and the like employ parallel packet processing
in which multiple programmable packet processing ele-
ments simultaneously and in parallel perform various pro-
cessing operations on different packets. In other network
devices, a pipeline architecture employs sequentially
arranged programmable packet processing elements such
that different packet processing elements in the pipeline may
be processing different packets at a given time. In some such
systems, the processing elements engage various external
resources, such as hardware accelerators, for performing
certain processing operations on the packets. In such sys-
tems, it is important to efficiently utilize the respective
packet processing elements and to minimize latency when
processing packets by the network devices. One type of
operation that a network device needs to efficiently perform
is the generation of one or more lookup keys, based on
information in a packet, that are subsequently utilized when
performing various packet processing operations on the
packet.

SUMMARY

In an embodiment, a method for processing packets in a
network device comprises parsing a packet by a program-
mable processing unit executing computer readable instruc-
tions stored in a non-transitory computer readable storage
medium. Parsing the packet includes identifying, by execut-
ing instructions stored in the non-transitory computer read-
able storage memory, one or more protocol layers within a
header of the packet, identifying, by executing instructions
stored in the non-transitory computer readable storage
memory, respective locations of protocol headers within the
header of the packet, the respective locations corresponding
to respective one or more identified protocol layers, and
providing the respective identified locations of protocol
headers within the header of the packet to a hardware key
generator block configured to generate one or more keys for

15

20

40

45

50

2

the packet based at least on information included in the
packet. The method further comprises generating, by the key
generator block and using the respective identified locations,
a lookup key corresponding to the packet. Generating the
lookup key includes extracting, using an identified location
of a protocol header, one or more fields from the corre-
sponding protocol header, and generating the lookup key to
include the one or more fields. The method additionally
comprises providing the lookup key to a lookup engine, and
performing, by the lookup engine and based on the lookup
key, a lookup operation with respect to the packet.

In another embodiment, a network device comprises a
plurality of network ports configured to receive and to
transmit packets on a network. The network device also
comprises one or more packet processing nodes. The one or
more respectfully one or more packet processing nodes
respectively comprise a processing unit configured to
execute computer readable instructions stored in a non-
transitory computer readable medium and a hardware key
generator block coupled to the packet processing node. The
computer readable instructions stored in the non-transitory
computer readable medium, when executed by the process-
ing unit, cause the processing unit to parse a packet to
identify at least a first protocol layer within a header of the
packet, and identify a location, within the header of the
packet, of a protocol header corresponding to the first
protocol layer. The hardware key generator block is config-
ured to extract, using the identified location, one or more
header fields from the protocol header, and generate a
lookup key to include the one or more header fields. The
network device additionally comprises a lookup engine
coupled to the key generator block, the lookup engine
configured to perform, based on the lookup key, a lookup
operation on the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of an example
network device 10 configured to employ flexible packet
parsing and key generation techniques of the present dis-
closure, according to an embodiment.

FIGS. 2A-2D are diagrams of several example packet
formats that a network device supports and/or is configu-
rable to support, according to an embodiment.

FIG. 3A is a diagram of an example memory used for
storing a packet being processed by a network device,
according to an embodiment.

FIG. 3B is a diagram of an example key segment field that
identifies an example header field to be included in a key
generated for a packet being processed by a network device,
according to an embodiment.

FIG. 3C is a diagram of another example key segment
field that identifies an example header field to be included in
a key generated for a packet being processed by a network
device, according to another embodiment.

FIG. 4 is a diagram of an example profile table, according
to an embodiment.

FIG. 5 is a block diagram of another network device
configured to employ flexible packet parsing and key gen-
eration techniques of the present disclosure, according to
another embodiment.

FIG. 6 is a block diagram of an engine access point (EAP)
utilized with the network device of FIG. 5, according to an
embodiment

FIG. 7 is a block diagram of a packet processing node 700
that is utilized with the network device of FIG. 5, according
to an embodiment.

US 9,479,620 B2

3

FIG. 8 is a flow diagram of another example method for
processing a packet in a network device, according to an
embodiment.

DETAILED DESCRIPTION

FIG. 1 is a simplified block diagram of an example
network device 10 configured to employ flexible packet
parsing and key generation techniques of the present dis-
closure, according to an embodiment. The network device
10 is generally a computer networking device that connects
two or more computer systems, network segments, subnets,
and so on. For example, the network device 10 is a switch,
in one embodiment. It is noted, however, that the network
device 10 is not necessarily limited to a particular protocol
layer or to a particular networking technology (e.g., Ether-
net). For instance, the network device 10 could also be a
bridge, a router, a VPN concentrator, etc.

The network device 10 includes a programmable packet
processor 11 coupled to a plurality of network ports 12, and
each of the network ports 12 is, in turn, coupled via a
respective communication link to a communication network
and/or to another suitable network device within a commu-
nication network. Generally speaking, the packet processor
11 is configured to process packets received via ingress ports
12, to determine respective egress ports 12 via which the
packets are to be transmitted, and to transmit the packets via
the determined egress ports 12. In some embodiments, the
packet processor 11 processes packet descriptors associated
with the packets rather than processing the packets them-
selves. A packet descriptor includes some information from
the packet, such as some or all of the header information of
the packet, and/or includes information generated for the
packet by the network device 10, in an embodiment. In some
embodiments, the packet descriptor includes other informa-
tion as well such as an indicator of where the packet is stored
in a memory associated with the network device 10. For ease
of explanation, the term “packet” herein is used to refer to
a packet itself or to a packet descriptor associated with the
packet.

In an embodiment, during processing of a packet, the
packet processor 11 generates one or more keys based on
information included in and/or associated with the packet,
and determines, based on the one or more keys, one or more
processing operations to be performed with respect to the
packet, such as trapping the packet or mirroring the packet
to another processor (not shown) for further analysis, drop-
ping or discarding the packet, determining an appropriate
port 12 via which to forward the packet, updating an
appropriate metering counter to account for the packet, etc.
In an embodiment, to generate a key for a packet, the packet
processor 11 extracts one or more fields from a header of the
packet, and includes values of the one or more extracted
fields in the key generated for the packet. In some embodi-
ments, a location of a field within a header of the packet
depends on various factors, such as a number of protocol
layer encapsulations within the packet, types of protocols
encapsulated within the packet, presence or absence of
certain tags, such as virtual local area network (VL AN) tags,
in a header of the packet, number of multiprotocol label
switching (MPLS) labels in the header of the packet, etc.
Thus, in order to generate a key for a packet, the packet
processor 11 first determines locations of the one or more
fields in the header of the packet, and then extracts the one
or more header fields from the header of the packet using the
determined locations, in various embodiments.

25

40

45

55

4

In an embodiment, a location of a field in a particular
protocol layer header is set, or predetermined, relative to a
start of the particular protocol layer header within the
packet. However, the start of the particular protocol layer
header depends on various factors such as a number, types
and/or lengths of other protocol layer headers that precede
the particular protocol layer header in the packet, in at least
some embodiments. In an embodiment, the packet processor
11 identifies one or more protocol layers within a header of
a packet, and determines offsets, with respect to a beginning
of the packet, corresponding to respective beginning loca-
tions of the corresponding protocol layer headers. Then, to
generate a key for the packet, the packet processor 11
extracts a particular field from a particular protocol layer
header using the demined location of the beginning of the
protocol layer header as an anchor into the protocol layer
header, and a predetermined offset, with respect to the
beginning of the protocol layer header, corresponding to the
location of the particular field in the protocol layer header.

The packet processor 11 includes a processing unit 14 and
a key generator block 16. The processing unit 14 is coupled
to a data memory 17 and a program memory 18. In an
embodiment, the data memory 17 is used to temporarily
store information associated with a packet currently being
processed by the packet processor 11. For example, the data
memory 17 stores a packet descriptor associated with the
packet currently being processed by the packet processor 11,
in an embodiment. In an embodiment, the data memory 17
also stores data or information generated for the packet
during processing of the packet by the packet processor 11,
such as indications of processing operations to be performed
with respect to the packet by the packet processor 11. The
program memory 18 stores computer readable instructions
executable by a processor, in an embodiment.

In an embodiment, the processing unit 14 is configured to
process packets by executing computer readable instructions
stored in the program memory 17. In an embodiment, the
processing unit 14 is a microprocessor. In another embodi-
ment, the processing unit 14 is a suitable processing unit
other than a microprocessor. The key generator block 16, on
the other hand, is implemented using one or more applica-
tion-specific integrated circuits (ASICs) or other hardware
components, in an embodiment.

In an embodiment, the processing unit 14 executes com-
puter readable instructions to identify protocol layers within
a header of a packet, and to determine respective locations
of corresponding protocol layer headers within the header of
the packet. In an embodiment, the processing unit 14 iden-
tifies protocol layers in a packet, and/or determines protocol
layer header locations within a header of the packet, by
executing a state machine according to which a particular
protocol layer and/or a location of a particular protocol layer
header within the packet is determined based on one or more
header fields in protocol layer header (or headers) preceding
the particular protocol layer header in the packet. The
processing unit 14 then provides the determined protocol
layer header location to the key generator block 16, in an
embodiment. The key generator block 16 utilizes the deter-
mined protocol layer header location to obtain a value of a
field in the protocol layer header, for example by accessing
an appropriate memory location in which the corresponding
field is stored in the data memory 17.

In an embodiment, the processing unit 14 provides the
determined protocol layer header locations to the key gen-
erator block 16 by updating values of general purpose
anchors 22 accessible by the key generator block 16. For
example, the packet processor 11 includes one or more

US 9,479,620 B2

5

registers, or memory locations, for storing values of anchors
corresponding to beginning locations of protocol layer head-
ers determined during processing of a packet by the pro-
cessing unit 14. To retrieve information from a field of a
particular protocol layer header, the key generator block 16
obtains a value that indicates the location of the beginning
of the particular layer header identified by the processing
unit 14, and utilizes the value as an anchor into the particular
layer header, in an embodiment. For ease of explanation, as
used herein, the terms “anchor” or “general purpose anchor”
are used interchangeably to refer to a location (e.g., a
beginning) of a particular protocol layer header and a
register or a memory location used for storing an indication
of the location of the particular protocol header. The key
generator block 16 utilizes the determined protocol layer
header location to retrieve appropriate protocol layer header
fields from the header of the packet, in an embodiment.

In the example embodiment of FIG. 1, the packet pro-
cessor 11 includes three general purpose anchors 22, a first
general purpose anchor 22-1, a second general purpose
anchor 22-2, and a third general purpose anchor 22-3. Three
general purpose anchors 22 allow the packet processor 11 to
make available, to the key generator block 16, up to three
protocol layers within packets being processed by the packet
processor 11, in an embodiment. In other embodiment, the
packet processor 11 includes other suitable numbers (e.g., 1,
2,4,5,6,7, 8, etc.) of general purpose anchors 22. In some
such embodiments, greater numbers of general purpose
anchors 22 allow the packet processor 11 to make available,
to the key generator block 16, greater numbers of protocol
layer headers within packets being processed by the packet
processor 11, allowing key generation using fields of deeper
protocol layers of packets being processed by the packet
processor 11, in at least some embodiments.

In an embodiment, the general purpose anchors 22 do not
globally correspond to any specific protocol layer headers.
Rather, the processing unit 14 updates values of the general
purpose anchors 22 based on protocol layers identified in a
packet during processing of the packet by processing unit
14, in an embodiment. Thus, a particular general purpose
anchor 22 corresponds to a first protocol layer for a first
packet processed by the processing unit 14, and corresponds
to a second protocol layer for a second packet processed by
the processing unit 14, in an example embodiment. For
example, a general purpose anchor (e.g., the general purpose
anchor 22-1) indicates a location of an internet protocol (IP)
header for a first packet processed by the processing unit 14,
and indicates a location of an MPLS header in a second
packer processed by the processing unit 14, in an example
embodiment. Further, the processing unit 14 updates values
of one or more of the general anchors 22 more than one time
during processing of a packet, for example when the pro-
cessing unit 22 re-parses a packet after performing tunnel
termination processing of the packet, in some embodiments
and/or scenarios. In such embodiments and/or scenarios, a
general purpose anchor 22 can correspond to different
protocol layer headers within a packet at different stages of
processing of the packet. For example, a general purpose
anchor 22 (e.g., the general purpose anchor 22-1) indicates
a location of an internet protocol (IP) header when parsing
of a packet is performed prior to tunnel termination of a
header of the packet, and indicates a location of an MPLS
header after parsing of the packet is performed after tunnel
termination processing of the header of the packet, in some
embodiments.

Because the processing unit 14 parses packets to identify
protocol layers and locations of protocol headers within the

20

40

45

55

65

6

packets by executing computer readable instructions, the
processing unit 14 is configurable to process packets con-
forming to any network protocol or any combination of
network protocols, including protocols developed in the
future. Parsing of a packet, in this manner, is performed
relatively infrequently during processing of a packet, in
various embodiments. For example, in one example embodi-
ment or scenario, parsing of a packet, in this manner, is
performed only one time during processing of the packet. In
another example embodiment or scenario, parsing of a
packet, in this manner, is performed twice during processing
of a packet, a first time before tunnel termination processing
of a header of the packet, and a second time after tunnel
termination processing of the header of the packet. In other
embodiment and/or scenarios, parsing of a packet, in this
manner, is performed other suitable numbers (e.g., 3, 4, etc.)
of times during processing of the packet. Key generation, on
the other hand, is performed relatively more frequently
during processing of the packet for use in performing
various processing operations with respect to the packet, in
at least some embodiments. In an embodiment, because
header field extraction and key generation is performed by
a hardware key generator block 16, header field extraction
and key generation is performed more quickly compared to
systems in which field extraction and/or key generation is
performed by executing computer readable instructions,
such as during parsing of the packet according to computer
readable instructions. In at least some embodiments, parsing
packets to identify protocol layer header locations in headers
of the packet using computer readable instructions provides
flexibility to the packet processor 11 to support various
packet formats, including packet formats developed in the
future. Further, performing header field extraction and key
generation using a key generator block implemented in
hardware reduces a processing load on the packet processing
unit and 14 and allows the packet processor 11 to process
packets more quickly and to introduce less processing
latency into flows of packets entering the network device
100, in at least some embodiments and/or scenarios.

In an embodiment, the key generator block 16 includes, or
is coupled to, a profile table 20. The profile table 20 includes
a plurality of entries, each entry corresponding to a particu-
lar key, such as a forwarding lookup key, an longest prefix
match (LPM) key, a policy control list (PCL) key, etc., that
can be generated by the key generator block 16. For
example, an entry of the profile table 20 corresponding to a
key includes indications of one or more header fields to be
included in one or more segments of the key, in an embodi-
ment. Each header field to be included in a key is identified
in the profile table 20 by an anchor corresponding to a
protocol layer header from which the header field is to be
obtained, and an offset of the header field relative to the
anchor corresponding to the protocol layer header, in an
embodiment. In an embodiment, to generate a key, the key
generator block 16 accesses an entry, in the profile table 20,
corresponding to the key, wherein the entry indicates to the
generator block 18 which of general purpose anchors 22
should be used to retrieve an appropriate header field to be
included in the key. The key generator block 16 utilizes the
value of the general purpose anchor 22 indicated in the entry,
and an offset with respect to the value of the general purpose
anchor 22, to retrieve the appropriate header field from the
header of the packet, in an embodiment. In an embodiment,
the value of the general purpose anchor 22 depends on the
particular packet being processed by the packet processor
11, and may be different for different packets processed by
the packet processor 11. Because the value of the general

US 9,479,620 B2

7

purpose anchor 22 is updated, by the processing unit 14, to
indicate the location of the protocol layer header in the
particular packet for which the key is being generated by the
key generator block 16, the key generator block 16 extracts
information from the correct location within the particular
packet, in an embodiment. Several example formats, and
identification of protocol layers and protocol layer header
locations within packets that conform to the example packet
formats, according to some embodiments, are described
below with respect to FIGS. 2A-2D.

In some embodiments, the processing unit 14 is config-
ured to override one or more fields to be included in a key
in some situations. In an embodiment, to override a field to
be included in a key, the processing unit 14 provides, to the
key generator block 16, header field information, such as
anchor and offset information, corresponding to a new
header field to be included in the key. For example, the
packet processor 11 includes one or more “key segment
override” registers or memory locations (not shown) acces-
sible by the key generator block 16, in an embodiment. To
provide new information corresponding to a key segment to
be used for a particular key, the processing unit 14 updates
values of key segment override registers with information
corresponding to the new header field to be included in the
key segment, in this embodiment. The key generator block
16 then generates the key utilizing the new information
provided by the processing unit 14 in place of the corre-
sponding information stored in the profile table 20, in an
embodiment.

Upon generating a key for a packet, the key generator
block 16 provides the key to an engine 24 (e.g., a lookup
engine), in an embodiment. In an embodiment, the engine 24
obtains (e.g., from a table in a memory) based on the key an
indication of a processing operation to be performed with
respect to the packet by the packet processor 11. The packet
processor 11 (e.g., the processing unit 14 of the packet
processor 11) performs the indicated processing operation
with respect to the packet, in an embodiment.

FIGS. 2A-2D are diagrams of several example packet
formats 50-90 that network device 10 of FIG. 1 supports
and/or is configurable to support, according to an embodi-
ment. In other embodiments, the network device 10 of FIG.
1 supports and/or is configurable to support only some of the
example packet formats 50-90 and/or is configured and/or
configurable to support suitable packet formats other than
the example packet formats 50-90. Turning first to FIG. 2A,
a packet format 50 corresponds to an Ethernet packet
encapsulating an internet protocol (IP), such as an IP version
4 (IPv4) or IP version 6 (IPv6), packet encapsulating a
transmission control protocol (TCP) packet. In an embodi-
ment, a header 51 of the packet format 50 includes an
Ethernet header 52, followed by an IP (e.g., IPv4 or IPv6)
header 54, followed by a TCP header 56. In an embodiment,
the processing unit 14 identifies the protocol layer headers
52-56, in a packet that conforms to the packet format 50,
according to a parsing state machine that operates by reading
values of various fields of the headers 52-56, and updating
parser states according to the values of the header fields. In
an embodiment, the processing unit 14 identifies a particular
protocol layer within the header 51, and determines a
location of a corresponding protocol layer header within the
header 51, based one or more fields in one or more protocol
layer headers preceding the particular protocol layer in the
header 51. In an embodiment, the initial packet type corre-
sponding to the packet format is predetermined and is
known to the parser state machine that operates on the
packet format 50. For example, the network device 10 is an

10

15

20

25

30

35

40

45

50

55

60

65

8

Ethernet switch, in an embodiment. The processing unit 14
is configured to parse various Ethernet packet types, in this
embodiment. The initial header type (in this case, Ethernet)
is fixed as an initial state of the parsing state machine, in this
embodiment.

In an embodiment, the processing unit 14 determines that
an [P header (e.g., an IPv4 header or an IPv6 header) follows
the Ethernet header 52 based on a value of a field in the
Ethernet header 52. For example, the Ethernet header field
52 includes an Ethertype field that indicates the protocol
layer (in this case, an IP layer) that follows the Ethernet
header 52, in an embodiment. The processing unit 14
identifies that the IP header 54 follows the Ethernet header
54 based on the value of the Ethertype field of the header 52,
in this embodiment. Additionally, the processing unit 14
determines a location of the IP header 54. For example, the
processing unit 14 determines an offset, with respect to the
beginning (e.g., first byte) of the packet, of the beginning
(e.g., first byte) of the IP header 54. The offset of the IP
header 54 depends on the length of the Ethernet header 52,
in an embodiment. The length of the Ethernet header 52
varies based on, for example, presence or absence of various
tags, such as VLAN tags, in the Ethernet header 52, in an
embodiment. The processing unit 14 determines the length
of the Ethernet header 52 based on presence or absence
VLAN tags in the Ethernet header 52 and/or the number of
VLAN tags in the Ethernet header 52, and determines the
location of the IP header 54 as an offset, from the beginning
of the packet, corresponding to the length of the Ethernet
header 52. Upon determining the location of the IP header
54, the processing unit 14 updates a value of a first anchor
22 to indicate the determined location of the IP header 54.
For example, the processing unit 14 updates the value of the
first anchor 22-1 to indicate the determined offset corre-
sponding to the IP header 54, in an embodiment.

The processing unit 14 continues parsing of the packet by
analyzing appropriate fields of the IP header 54, in an
embodiment. In an embodiment, the processing unit 14
determines, based on one or more fields in the IP header 54,
that the IP header 54 is followed by the TCP header 56. For
example, the IP header 54 includes a “next protocol” field set
to indicate TCP as the next protocol in the packet. In an
embodiment, the processing unit 14 determines that the TCP
header 56 follows the IP header 54 based on the value of the
next protocol field of the IP header 54. The processing unit
14 also determines a location of the TCP header 56, in an
embodiment. For example, the processing unit 14 deter-
mines the location of the TCP header 56 as an offset, with
respect to the beginning of the packet, of the beginning of
the TCP header 56, in an embodiment. In an embodiment,
the processing unit 14 determines a length of the IP header
54 based on a “length” field in the IP header 54, and
determines the offset of the TCP header 54 as a mathematical
sum of the offset of the IP header 54, corresponding to the
value of the first anchor 22-1, and the determined length of
the IP header 54. Upon determining the location of the TCP
header 56, the processing unit 14 updates a value of a second
anchor 22 to indicate the determined location of the TCP
header 56. For example, the processing unit 14 updates the
value of the second anchor 22-2 to indicate the determined
offset corresponding to the TCP header 56, in an embodi-
ment.

Turning now to FIG. 2B, a packet format 60 includes an
Ethernet layer, which encapsulates a multiprotocol label
switching layer, which encapsulates an IP layer, which
encapsulates a TCP layer. The packet format 60 includes a
header 61, which includes an Ethernet header 62, followed

US 9,479,620 B2

9

by an MPLS header 64, followed by an IP header 66,
followed by a TCP header 68. In an embodiment, the
processing unit 14 parses a packet that conforms to the
packet format 60 in a manner similar to parsing of a packet
conforming to the packet format 50. In an embodiment, the
processing unit 14 determines that the Ethernet header 62 is
followed by the MPLS header 64 based on an Ethertype field
of the Ethernet header 62 which indicates MPLS as the
protocol layer that follows the Ethernet header 62. In an
embodiment, the Ethertype field of the Ethernet header also
indicates that the MPLS header 64 is flowed by the IP header
62. In another embodiment, the MPLS header indicates that
the IP header 62 follows the MPLS header 62. The IP header
64 includes a “next protocol” field that indicates the UDP
protocol as the next layer protocol in the packet, in an
embodiment. The processing unit 14 determines, based on
the “next protocol” field of the IP header 62 that the IP
header 62 is followed by the UDP header 64, and determines
a location of the UDP header 64, in an embodiment. In an
embodiment, the processing unit 14 determines the location
of'the UDP header 64 as an offset, from the beginning of the
packet, of the beginning of the UPD header 64. In an
embodiment, the processing unit 14 determines the offset as
a mathematical sum of the beginning of the IP header 64
(i.e., the value of the second anchor 22-2) and a length of the
IP header 64 as indicated by a length field in the IP header
64. The processing unit 64 then updates a value of a third
anchor, such as the anchor 22-3, to indicate the determined
offset of the UDP header 66, in an embodiment.

Turning now to FIG. 2C, the packet format 70 corre-
sponds to a tunnel terminated packet. In particular, in the
example embodiment of FIG. 3C, an Ethernet encapsulating
IP encapsulating TCP packet is tunneled within an Ethernet
encapsulating a transparent interconnection of lots of links
(TRILL) protocol packet. The packet format 70 includes a
packet header 71 which includes a first Ethernet header 72,
followed by a TRILL header 74, followed by a second
Ethernet header 76, followed by an IP header 78, followed
by a TCP header 80. In an embodiment, the processing unit
14 processing a packet conforming to the packet format 70
in a manner similar to a packet conforming to the packet
format 300 described above. In an embodiment, the pro-
cessing unit 14 identifies protocol layers within the header
71, determines locations (e.g., offsets with respect to the
beginner of the packet) of the corresponding protocol head-
ers within the header 71, and updates general purpose
anchors 22 to indicate the determined locations of the
protocol layers within the header 71. In an embodiment, the
processing unit 14 identifies a particular protocol layer
within the header 71, and determines a location of a corre-
sponding protocol layer header within the header 71, based
one or more fields in one or more protocol layer headers
preceding the particular protocol layer in the header 71.
Upon determining a location of a protocol layer header in the
header 71, the processing unit 14 updates a value of a
general purpose anchor 22 to indicate the location of the
protocol layer header in the header 71. For example, the
processing unit 14 updates the first anchor 22-1 to indicate
a location of the TRILL header 74, updates the second
anchor 22-2 to indicate a location of the second Ethernet
header 76, and update the third anchor 22-2 to indicate a
location of the IP header 78, in an embodiment.

In some embodiments, the processing unit 14 performs
tunnel termination with respect to a packet conforming to
the packet format 70 by removing the Ethernet header 72
and the TRILL header 74 from the packet header 71. In some
such embodiments, the processing unit 14 then parses the

10

20

25

30

35

40

45

50

55

60

65

10

tunnel terminated packet, to identify protocol layers and to
determine locations of protocol payer headers in the tunnel
terminated header. The processing unit 14 updates the values
of the general purpose anchors 22 to indicate protocol
header location determined according to parsing of the
tunnel terminated header, in an embodiment. For example,
the processing unit 14 updates the first anchor 22-1 to
indicate the determined location of the IP header 78, and
updates the second anchor 22-2 to indicate the determined
location of the TCP header 80, in an embodiment. The key
generator block 16 subsequently generates a key for the
packet using a newly updated value of an anchor 22 to
retrieve a field from the corresponding protocol layer header
(e.g., from the TCP header 80), in an embodiment.

Turning now to FIG. 2D, the packet format 90 corre-
sponds to a general format packet having protocols X, Y, Z
and W, with the protocol X being the default outer protocol
of the network device 10. The packet format 90 includes a
packet header 91 which includes a first protocol layer header
X 92, followed a second protocol layer header Y 94,
followed by a third protocol layer header Z 96, followed by
a fourth protocol layer header Z 98. In an embodiment, the
processing unit 14 determines the identity of each protocol
layer Y, Z, and W and/or determines a location of each of the
protocol layer headers 94-96 corresponding to the protocol
layers Y, Z and W in a manner similar to the formats
discussed above with respect to packet formats 50, 60 and
70. For example, the processing unit 14 determines the
identity of each protocol layer Y, Z, and W and/or deter-
mines a location of each of the protocol layer headers 94-96
corresponding to the protocol layers Y, Z and W based on
one or more fields in protocol layer header (or headers)
preceding the protocol layer Y, Z and Y. In an embodiment,
the processing unit 14 updates values of anchors 22 to
indicate the determined locations (e.g., offsets with respect
to the beginning of the packet) of the protocol layer header
94-96 corresponding to the protocol layers Y, Z and W. For
example, the processing unit 14 updates the first anchor 22-1
to indicate the determined location of the header 94 corre-
sponding to the protocol layer Y, updates the second anchor
22-2 to indicate the determined location of the header 96
corresponding to the protocol layer Z, and updates the third
anchor 22-3 to indicate the determined location of the header
98 corresponding to the protocol layer W, in an example
embodiment.

The key generator block 16 subsequently generates one or
more keys for the packet, wherein generating a key for the
packet includes performing one or more of the following:
extracting one or more fields from the header 94 using the
value of the first anchor 22-1 as an anchor into the header 94,
extracting one or more fields from the header 96 using the
value of the first anchor 22-2 as an anchor into the header 96,
and/or extracting one or more fields from the header 98
using the value of the first anchor 22-3 as an anchor into the
header 96, in this embodiment.

Referring back to FIG. 1, in some embodiment, the
network device 100 includes a packet parsing engine 26. The
packet parsing engine 26 is implements using one or more
application-specific integrated circuits (ASICs) or other
hardware components, in an embodiment. The parsing
engine 26 is configured to recognize at least some of the
packet formats supported by the network device 10, in an
embodiment. For example, in an embodiment, the parsing
engine 26 is configured to recognize one or more of the
packet formats 50-90 described above. In an embodiment,
the packet parsing engine 26 parses a packet before the
packet is provided to the processing unit 14. The packet

US 9,479,620 B2

11

parsing engine 26 identifies one or more protocol layers
within a header of the packet, and determines corresponding
protocol layer locations within the header of the packet, in
an embodiment. In an embodiment, the packet parsing
engine 26 updates one or more general purpose anchors with
the protocol layer header locations identified by the packet
parsing engine 26 and/or associates the identified protocol
header locations with the packet, for example by including
indications of the identified locations in a packet descriptor
corresponding to the packet. In some embodiments, the
processing unit 14, rather than the parsing engine 26,
updates one or more general purpose anchors with the
protocol header locations identified by the packet parsing
engine 26 based indications of the protocol header locations
identified by the packet parsing engine 26 included in the
descriptor of the packet. Parsing the packet by the parsing
engine 26 accelerates parsing of packets conforming to at
least some (e.g., well known) packet formats, and offloads
parsing of such packets from the processing unit 14, in some
embodiments. Subsequently, during processing of the packet
by the processing unit 14, the processing unit 14 updates
values of some or all of the general purpose anchors 22, for
example if the processing unit 14 determines that the values
were incorrectly determined by the parsing engine 26, in
some embodiments.

FIG. 3Ais a diagram of an example memory 300 used for
storing a packet being processed by a network device, such
as the network device 10 of FIG. 1, and an example scenario
of retrieving a particular field from the memory 300, accord-
ing to an embodiment. In the illustrated example, a session
initiation protocol (SIP) field is extracted from an IPv4
protocol layer header of the packet stored in the memory
300. In an embodiment, the memory 300 corresponds to the
data memory 17 of the network device 10 of FIG. 1. In
another embodiment, the data memory 300 is used with
another suitable network device. As an example, the
memory 300 is four bytes wide, in the illustrated embodi-
ment. In other embodiments, the memory 300 has other
suitable widths.

In an embodiment, a first byte of the packet being
processed is stored at a location 302 of the memory 300. The
first byte of the packet corresponds to the beginning of an
Ethernet header within a header of the packet, for example,
in an embodiment. Further, the first byte of an IP header
(e.g., IPv4 header) is located a memory location 304 of the
memory 300, and the first byte of the SIP field of the IPv4
header of the packet is stored at memory location 306 of the
memory 300, in the illustrated embodiment.

In an example scenario, the key generator block 16
receives a request for a particular engine operation (e.g., a
lookup operation) to be performed based on a key generated
for the packet stored in the memory 300. In an embodiment,
the request includes an index identifying an entry, in the
profile table 20, corresponding to the requested processing
operation. The key generator block 16 accesses the profile
table 20 and retrieves the indexed entry from the profile table
20, in an embodiment. The retrieved entry of the profile table
20 includes one or more key segment fields that identify one
or more fields to be extracted from a header of the packet to
be included in the key, in an embodiment. FIG. 3B is a
diagram of an example key segment field 350 that identifies
an example header field to be included in a key, according
to an embodiment. In an embodiment, the entry retrieved
from the profile table 20 includes one or more key segment
fields such as the segment field 350. In the example embodi-
ment of FIG. 3B, the key segment field 350 identifies a
session initiation protocol (SIP) field from the IPv4 protocol

10

15

20

25

30

35

40

45

50

55

60

65

12

layer header of the packet. In an embodiment, the key
segment field 350 includes a base address subfield 350 that
indicates a memory location of the first by of the packet in
the data memory 17, an anchor subfield 354 that indicates
which general purpose anchor 22 (e.g., the general purpose
anchor 22-1) to use for extracting the SIP field from the [Pv4
header of the packet, an offset subfield 356 that indicates an
offset (e.g., a number of bytes), with respect to the first byte
of the IPv4 protocol layer header, corresponding to a first
byte of the SIP field in the IPv4 header of the packet, and a
length subfield 358 that indicates the length (e.g., number of
bytes) of the SIP field in the IPv4 header. FIG. 3C is a
diagram of another example key segment field 360 that
identifies an example header field to be included in a key,
according to another embodiment. In the embodiment of
FIG. 3C, the key segment field 360 combines the base
address subfield 352 and the offset subfield 354 into a single
base address subfield 362 that indicates a mathematical sum
ofthe value of base address subfield 352 and the value of the
offset subfield 356.

Referring again to FIG. 3A, in an embodiment, the value
of the anchor indicated in the anchor subfield 352 is set
during parsing of the packet by the processing unit 14 to
indicate an offset of the first by of the IPv4 header from the
beginning of the packet. In the example scenario of FIG. 3,
the value of the anchor indicated by the anchor subfield 352
(e.g., the value of the anchor 22-1) is 18. Further, the value
of the offset field 356 is 12, in the illustrated embodiment.
In an embodiment, the generator block 14 determines an
offset of the SIP field with respect to the first byte of the
packet to be a sum of the value of the anchor indicated by
the anchor field 354 and the value of the offset field 356 (in
this case, 12+18=30). Alternatively, if the key segment field
format 360 of FIG. 3C is used, the key generator block 16
determines the memory location 306 of the first byte of the
SIP field as a sum of the value of the base address field 362
and the value of the anchor indicated by the anchor subfield
354, in an embodiment. In an embodiment, to retrieve the
SIP field from the IPv4 header of the packet, the key
generator block 14 retrieves a number of bytes indicated in
the length subfield 358 (e.g., 4 bytes) beginning at the
determined offset (e.g. 30 bytes) from the address indicated
in the base address subfield 352, in an embodiment.

FIG. 4 is a diagram of an example profile table 400,
according to an embodiment. The profile table 400 includes
a plurality of entries, each entry corresponding to a particu-
lar key, such as a forwarding lookup key, an longest prefix
match (LPM) key, a policy control list (PCL) key, etc., that
can be generated during processing of a packet by a network
device, such as the network device 10 of FIG. 1. For
example, in an embodiment, an entry of the profile table 20
corresponding to a key includes indications of one or more
header fields to be included in one or more segments of the
key, and other information regarding the key, such as an
indication of an accelerator engine configured to perform a
processing operation (e.g., a lookup operation) based on the
key, a memory location in which to store a result of the
processing operation performed based on the key, etc. The
profile table 400 corresponds to the profile table 20 of the
network device 10 of FIG. 1, in an embodiment. In another
embodiment, the example profile table 400 is used with
another suitable network device.

In an embodiment, an entry corresponding to a particular
key in the profile table 400 occupies one or more rows of the
profile table 400, depending on the size of the key. For
example, in the embodiment of FIG. 4 an entry 410 occupies
k rows of the profile table 400, and each of the entries 410-x

US 9,479,620 B2

13

and 410-z occupies a single row of the profile table 400. In
an embodiment, a first row of each entry corresponding to a
key (or corresponding to a transaction that includes the key)
also includes a general information field 404 and a reply
address field 406. The general information field 404 includes
general information about the transaction, such as, for
example, an identifier of an engine (e.g., an accelerator
engine 106) configured to perform the particular type of
processing operation requested by the transaction. The reply
information field 406 indicates where to store a result of the
processing operation when the result is received from the
engine. For example, in an embodiment, the response field
indicates an address of a memory location, such as a
memory location in the data memory 17 (FIG. 1) at which
the result of the processing operation is to be stored when the
result is received from the engine.

In an embodiment, each row of the profile table 400
includes one or more key segment fields 408 that specify
which information is to be included in one or more segments
of the key generated for the transaction. In an embodiment,
each key segment field 408 is formatted as the example key
segment field 350 of FIG. 3B. In another embodiment, each
key segment field 408 is formatted as the example key
segment field 360 of FIG. 3C. In an embodiment, each row
of the profile table 400 is configured to hold a maximum
number x of key segment fields 408. For example, a first row
corresponding to an entry for a transaction is configured to
hold a maximum of two key segment fields 408, and each
following row corresponding to the entry, if any, includes a
maximum of three key segment fields 408. In the example
embodiment of FIG. 4, the first row 412-1 of the entry 410-1
includes two key segment fields 408, and each of the rows
412-2 to 412-k includes three key segment fields 408. The
entry 410-x of the profile table 400 comprises a single row
412-m that includes two key segment fields 408, in the
illustrated embodiment. The entry 410-z comprises a single
row 412-w that includes only one key segment field 408. The
second key segment field in the row 412-w does not hold any
information, as indicated by “not valid” in the place of the
second key segment field, in the illustrated embodiment.

In an embodiment, each row of the profile table 400
includes a “last” field 402 that indicates whether or not the
row is a last row of an entry in the profile table 400. For
example, a value of a logic one (“1”) in the field 402 in a row
of the table 400 indicates that the row is the last row of a
particular entry in the profile table 400, and a value of a logic
zero (“0”) in the field 402 in a row of the table 400 indicates
that the row is not the last row of a particular entry in the
profile table 400, or vice versa, in an embodiment. For
example, the entry 410-1 of the example profile table 400
includes k rows 412. A respective “last” field 402 of each of
the k rows 412, except for the last row 412-£, indicates that
the corresponding row is not the last row of the entry 410 as
indicated by “L.=0” in each of the rows 412 except for the
row 412-k, in the illustrated embodiment. The “last” field
402 of the row 412-k indicates that row 412-k is the last row
of the entry 410 as indicated by “L.=1" in the row 412-£, in
the illustrated embodiment. In an embodiment, to retrieve a
particular entry from the profile table 400, a key generator
block (e.g., the key generator block 16 of FIG. 1) extracts a
first row corresponding to the entry, and determines based on
a value of the “last” field 402 of the first row of the entry
whether or not the retrieved first row is the last row of the
entry. [f the key generator block determines that the first row
is not the last row of the entry, the key generator block
retrieves the following row in the profile table 400 and
determines, based on the “last” field of the following row

10

15

20

25

30

35

40

45

50

55

60

65

14

whether the following row is the last row of the entry. The
key generator block continues retrieving following rows of
the profile table 400 until the key generator block retrieves
the last row of the entry, and determines based on the “last”
field 402 of the retrieved row that the retrieved row is the last
row of the entry, in an embodiment.

Because key segment fields 402 corresponding to rela-
tively longer keys are distributed among multiple rows of
the profile table 400, each row of the profile table 400 need
not accommodate a longest key (e.g., a key with the greatest
numbers of segments) supported by the profile table 400. As
a result, distributing key segment fields 402 corresponding
to relatively longer keys results in better utilization of the
memory used for storing the profile table 400 compared to
a system in which the profile table 400 is configured such
that each row is capable of holding all segments if of a
maximum length key supported by the profile table 400, in
at least some embodiments.

FIG. 5 is a block diagram of another network device 500
configured to employ flexible packet parsing and key gen-
eration techniques of the present disclosure, according to
another embodiment. The network device 500 is similar to
the network device 10, except that the packet processor 501
of the network device 500 includes a plurality of program-
mable packet processing nodes 504 rather than the single
processing unit 14 of packet processor 11 of FIG. 1. In an
embodiment, the PPNs 504 are configured to concurrently,
in parallel, perform processing of packets received by the
network device 500 via the ports 12. The packet processor
502 also includes a plurality of external processing engines
506. The external processing engines 506 are configured to
perform certain processing operations with respect to pack-
ets processed by the PPNs 504. The PPNs 504 are configured
to selectively engage the external engines 506 for perform-
ing the certain processing operations with respect to the
packets being processed by the PPNs 504, in an embodi-
ment. For example, the external processing engines 506 are
configured to perform processing operations with respect to
the packets based on keys (e.g., lookup operations) gener-
ated for the packets. In an embodiment, the plurality of
external processing engines 506 include one re more lookup
engines the same as or similar to the engine 24 of FIG. 1.

In the embodiment of FIG. 5, the packet processing nodes
504 are arranged in a plurality of packet processing clusters
(PPCs) 505. In an embodiment, PPNs 504 of a cluster 505
share certain resources of the network device 500. For
example, each PPC 505 includes a respective shared pro-
gram memory 508, a respective engine access point (EAP)
510, and a respective key generator block 514 shared by the
PPNs 504 in a PPC 505. In an embodiment, a shared
program memory 508 of a cluster 505 stores computer
readable instructions for performing processing operations
on packets, and the PPNs 504 in the cluster 505 execute the
computer readable instructions to process packets provided
for processing to the cluster 505. The EAP 510 in a cluster
505 serves as an interface between the PPNs 504 in the
cluster 505 and the external processing engines 506, in an
embodiment. For example, the EAP 510 is configured to
manage transactions between the PPNs 504 of the cluster
505 and the accelerator engines 506, in an embodiment. The
key generator block 514 is configured to generate keys for
the packets being processed by the PPNs 504 to be provided
to the external accelerator engines 506, in an embodiment.
Although the key generator block 514 is illustrated in FIG.
5 as separate from the EAP 510, the key generator block 514
is included in the EAP 510, in some embodiments. Alter-
natively, a respective key generator block 514 is included in

US 9,479,620 B2

15

each of the PPNs 504 and is responsible for generating keys
for packets being processed by the corresponding PPNs 504,
in some embodiments.

According to an embodiment, the PPNs 504 of a cluster
505 are configured to execute the computer readable instruc-
tions stored in the program memory 508 to process packets
provided for processing to the PPNs 504 of the cluster 505.
In an embodiment, each PPN 504 is configured to perform
multiple different processing operation of the packet. In
some embodiments, each PPN 504 is configured to perform
all necessary processing (run to completion processing) of a
packet, or to perform at least a portion of processing of a
packet. The external processing engines 506, on the other
hand, are implemented using application-specific integrated
circuits (ASICs) or other hardware components, and each
external processing engine 506 is dedicated to performing a
single, typically processing intensive operation, in an
embodiment. As just an example, in an example embodi-
ment, a first external processing engine 506 (e.g., the engine
506a) is a forwarding lookup engine, a second external
processing engine 506 (e.g., the engine 506x) is a policy
lookup engine, a third external processing engine 506 (e.g.,
the engine 5067) is a cyclic redundancy check (CRC)
calculation engine, etc.

During processing of the packets, the PPNs 504 selec-
tively engage the external processing engines 506 for per-
forming the particular processing operations on the packets.
In at least some embodiments, the PPNs 504 are not con-
figured to perform the particular processing operations that
the external processing engines 506 are configured to per-
form. The particular processing operations that the external
processing engines 506 are configured to perform are typi-
cally highly resource intensive and/or would require a
relatively longer time to be performed if the operations were
to be performed using a more generalized processor, such as
a PPN 504 (or a more generalized processor included in a
PPN 504), in at least some embodiments and/or scenarios. In
at least some embodiments, employing the external process-
ing engines 506 for performing the particular processing
operations reduces the number and/or the size of the PPNs
504 needed by the network device 100, for example to
support a certain bandwidth or line rate by the network
device 100. In at least some embodiments and scenarios, it
would take significantly longer (e.g., twice as long, ten times
as long, 500 times as long, etc.) for a PPN 504 to perform
a processing operation that an external processing engine
506 is configured to perform. As such, the external process-
ing engines 506 assist PPNs 504 by accelerating at least
some processing operations that would take a long time to be
performed by the PPNs 504, in at least some embodiments
and/or scenarios. Accordingly, the external processing
engines 506 are sometimes referred to herein as “accelerator
engines.” The PPEs 504 are configured to utilize the results
of the processing operations performed by the external
processing engines 506 for further processing of the packets,
for example to determine certain actions, such as forwarding
actions, policy control actions, etc., to be taken with respect
to the packets, in an embodiment.

In an embodiment, the PPNs 504 are configured to
execute computer readable instructions stored in the shared
memory 508 to parse the packets to identify protocol header
locations within headers of the packet, as described above
with respect to the processing unit 14 of FIG. 1. For
example, a packet processing unit 515 of the PPN 504
executes computer readable instructions stored in the shared
memory 508 to parse the packets to identify protocol header
locations within headers of the packet, in an embodiment. In

10

15

20

25

30

35

40

45

50

55

60

65

16

an embodiment, the packet processing unit 515 of the PPN
504 is the same as or similar to the processing unit 14 of
FIG. 1. For example, the packet processing unit 515 is a
microprocessor, in an embodiment. In another embodiment,
the packet processing unit 515 is another suitable processing
device.

In an embodiment, the PPNs 504 are configured to
provide the identified protocol header locations to the key
generator block 514, in an embodiment. For example, in an
embodiment, each PPN 504 includes a plurality of general
purpose anchors 516. In an embodiment, the general purpose
anchors 516 correspond to the general purpose anchors 22 of
FIG. 1. In an embodiment, the processing unit 515 of a PPN
504 updates the general purpose anchors 516 based on
protocol layer locations identified for a packet being pro-
cessed by the PPN 504. Subsequently, when the PPN 504
initiates a transaction with an accelerator engine 506 for
performing a particular processing operation with respect to
the packet, the key generator block 514 generates a key to
be sent to the accelerator engine 506 using the protocol
header locations within headers of the packet provided to the
key generator block 514 by the PPN 504. In an embodiment,
the key generator block 514 is the same as or similar to the
key generator block 16 of FIG. 1. In an embodiment, the key
generator block 514 utilizes a packet header location pro-
vided by the PPN 504 to retrieve an appropriate header field
from the header of the packet to be included in the key in a
manner the same as or similar to the key generator block 16
of FIG. 1. In another embodiment, the key generator block
514 utilizes one or more protocol layer header locations,
identified for the packet by the PPN 504, in another suitable
manner to generate a key.

In an embodiment, the network device 500 of FIG. 5
supports and/or is configurable to support example packet
formats 50-90 described above with respect to FIG. 2.
Various operations described below as performed by the
processing unit 14 of the network device 10 of FIG. 1 are
performed by the processing unit 515 of the network device
500, in some embodiments. Similarly, various operations
described below as performed by the key generator block 14
of the network device 10 of FIG. 1 are performed by the
processing unit 515, in some embodiments.

Although three PPCs 505 are illustrated in FIG. 5, the
network device 500 includes other suitable numbers (e.g., 1,
2,4,5,6,7, etc.) of PPCs 505 in other embodiments. In an
embodiment, PPNs 504 of a cluster share certain resources
of network device 500. For example, each PPC 505 includes
a respective shared program memory 508, in an embodi-
ment. A shared memory 508 included in a cluster 505 is
coupled to each PPN 504 in the cluster 505, in an embodi-
ment. In an embodiment, the shared memory 508 included
in a cluster 505 stores computer readable instructions for
performing processing operations on packets, and the PPNs
504 in the cluster 505 are configured to process packets by
executing instructions stored in the shared memory 508, in
an embodiment. Each PPC 505 also includes a respective
engine access point 510, in an embodiment. In an embodi-
ment, an engine access point 510 included in a cluster 505
is coupled to each PPN 504 in the cluster 505. In an
embodiment, the EAP 510 included in a cluster 505 serves
as an interface between the accelerator engines 506 and the
PPNs 504 in the cluster 505. In some embodiments, each
PPC 505 includes multiple program memories 508 and/or
multiple EAPs 510, each program memory 508 and/or EAP
510 coupled to a subset of PPNs 504. Further, in some
embodiments, the PPNs 504 of the network device 500 are
not arranged in clusters and/or do not share resources of the

US 9,479,620 B2

17

network device 500. For example, each PPN 504 includes or
is coupled to a respective dedicated program memory 508
and a respective dedicated EAP 510, in an embodiment.

In an embodiment, the packet processor 501 also includes
a distributor unit 518 and a reorder unit 520. The distributor
unit 518 is configured to distribute processing of packets
received via ports 512 to available PPNs 504, in an embodi-
ment. Because processing of packets is distributed among
multiple PPNs 504, and because the multiple PPNs 504
perform parallel processing of the packet, order of comple-
tion of processing of the packets by the PPNs 504 does not
exactly correspond to the order in which the packets were
received by the network device 500, in at least some
embodiments and/or scenarios. In an embodiment, upon
completion of processing of packets by PPNs 504, the PPNs
504 provide the packets to the reorder unit 520. The reorder
unit 520 is configured to maintain order of the packets, at
least within same data flows entering the network device
500, to ensure that these packets are transmitted from the
network device 500 in the order in which the packets were
received by the network device 500, in an embodiment. In
an embodiment, the reorder unit 520 provides the packets to
the appropriated egress ports 12 via which the packets are to
be transmitted by the network device 500, and the network
device 500 transmits the packets, in the order that the
packets were received, from the appropriate egress ports 12.

FIG. 6 is a block diagram of an engine access point (EAP)
600 utilized with the network device 500 of FIG. 5, accord-
ing to an embodiment. In an embodiment, the EAP 600 is
used as the EAP 510 of FIG. 5. For illustrative purposes, the
example EAP 600 is discussed with reference to the network
device 500 of FIG. 5. In other embodiments, however, EAP
600 is utilized in a suitable network device different than the
example network device 500 of FIG. 5.

In an embodiment, the EAP 600 corresponds to a packet
processing cluster and is coupled to PPNs 104 included in
the packet processing cluster. The EAP 600 includes a
cluster distributor unit 602, cluster accelerator engines 604
and cluster data memory 606, in an embodiment. The cluster
distributor is configured to distribute processing of packets
provided to the packet processing cluster by the distributor
118, and to distribute processing packets among available
PPNs 504 (FIG. 5) in the cluster. The cluster accelerator
engines 604 include one or more accelerator engines that are
local to the cluster. The accelerator engines 604 are gener-
ally similar to the accelerator engines 106 except that use of
the accelerator engines 604 is limited to PPNs 504 within the
cluster, in an embodiment. In an embodiment, the accelera-
tor engines 604 are configured to perform processing opera-
tions that do not require memory accesses and/or memory
lookups, while the accelerator engines 506 perform process-
ing operation that require memory accesses and/or memory
lookups. For example, the cluster accelerator engines 604
are configured to perform such operations as cyclic redun-
dancy check calculations and/or other calculations with
respect to packets being processed in the cluster 505-1, in an
embodiment. As used herein, the terms “accelerator engine”
and “external accelerator engine”” encompass the accelerator
engines 506 as well as the cluster accelerator engines 604.

In an embodiment, the cluster accelerator engines 604
include a packet parser configured to perform initial parsing
of packets before providing the packets the packets to PPNs
504. For example, in an embodiment, the cluster accelerator
engines 604 include a packet parser the same as or similar
or similar to the packet parser 26 of FIG. 1.

The cluster data memory 606 stores information common
to the PPNs 504 in the cluster 505-1, in an embodiment. For

40

45

50

65

18

example, the data memory 506 stores configuration infor-
mation common to the PPNs 104 in the cluster 505-1, in an
embodiment. In an embodiment, the cluster data memory
606 also stores packets provided to the cluster 505-1 by the
distributor 518 until processing of the packets is distributed
to the PPNs 504 by the cluster distributor 602, in an
embodiment. The cluster data memory also stores results of
processing operations performed with respect to packets
being processed by the PPNs 504 until the results are
provided to the PPNs 504 that requested the processing
operations, in an embodiment.

In an embodiment, the EAP 600 includes a profile table
610 and a key generator block 612. The profile table 610
includes a plurality of entries that include information for
handling transactions for particular processing operations.
For example, entries of the profile table 610 include infor-
mation for generating requests, to be sent to accelerator
engines 106, for performing the particular processing opera-
tions, in an embodiment. In an embodiment, an entry of the
profile table 610 corresponding to a processing operation
includes indications of one or more header fields to be
included in one or more segments of a key generated as part
of the transaction. Each header field to be included in a key
is identified in the profile table 610 by an anchor corre-
sponding to a protocol layer header from which the header
field is to be obtained, and an offset of the header field
relative to the anchor, in an embodiment. In an embodiment,
the profile table 610 corresponds to the profile table 20 of
FIG. 1 and/or to the profile table 400 of FIG. 4.

In an embodiment, to trigger an accelerator engine 506 for
performing a particular processing operation with respect to
a packet, a PPN 504 provides, to the EAP 600, an indication
of'the particular processing operation. For example, the PPN
504 provides, to the EAP 600, an index of an entry in the
profile table 610 that corresponds to the particular process-
ing operation. The EAP 600 receives the indication of the
particular processing operation and accesses the profile table
610 based on the indication (e.g., using the indication as an
index into the profile table 610), and retrieves, from the
profile table 610, information needed to handle a transaction
with the accelerator engine 506. Then, based on the infor-
mation retrieved from the entry in the profile table 610, the
EAP 600 generates a request for the processing operation,
and directs the request to an appropriate accelerator engine
506 for performing the processing operation. In an embodi-
ment, the key generator block 612 is configured to generate
a key, corresponding to the processing operation, based on
the information retrieved from an appropriate entry in the
profile table 610 for generating the key. In an embodiment,
the EAP 600 is configured to include the key generated by
the generator block 612 in the request directed to the
appropriate accelerator engine 506. In an embodiment, the
key generator block 612 corresponds to the key generator
block 16 of FIG. 1 and/or the key generator block 514 of
FIG. 5.

The EAP 600 is also configured to receive a response of
the transaction from the accelerator engine 506 that per-
formed the processing operation with respect to the packet,
the response containing the result of the processing opera-
tion. When the EAP 600 receives a result of the transaction,
the EAP 600 causes the result of the processing operation to
be written to a memory location indicated in the entry in the
profile table 610, in an embodiment.

FIG. 7 is a block diagram of a PPN 700 that is utilized as
one of the PPNs 504 in the network device 500 of FIG. 5,
according to an embodiment. For illustrative purposes, the
example PPN 700 is discussed with reference to the network

US 9,479,620 B2

19

device 500 of FIG. 5. In some embodiments, however, PPN
700 is utilized in a suitable network device different than the
example network device 500 of FIG. 5.

The PPN 700 includes a processing unit 702 coupled to an
instruction prefetch module 704, a data memory 706 and a
network access point (NAP) module 708. In an embodiment,
the processing unit 702 is a processing device configured to
perform packet processing operations selected from among
a set of packet processing operations. In an embodiment, the
processing unit 702 is a microprocessor. In another embodi-
ment, the processing unit 702 is a processing unit other than
a microprocessor. In an embodiment, the processing unit 702
corresponds to the processing unit 515 of FIG. 5. In another
embodiment, the processing unit 702 is a processing unit
different than the processing unit 515 of FIG. 5.

In an embodiment, the packet processing unit 702 per-
forms packet processing operations by executing computer
readable instructions stored in a non-transitory memory,
such as the shared program memory 708. The instruction
prefetch module 704 is configured to load, or “prefetches,”
sets of instructions from the memory 708, and the processor
module 702 operates by executing the prefetched instruc-
tions. Prefetching sets of instructions allows the processing
unit 702 to execute the instructions more quickly compared
to systems in which a processing unit reads instructions
directly from the memory that stores the instructions, in at
least some embodiments. In another embodiment, however,
the PPN 700 omits the prefetch module 704, and the
processor module 702 operates by reading instructions
directly from the memory 708.

The data memory 706 stores information needed for
processing of a packet being processed by the PPN 700, in
an embodiment. For example, the data memory 706 stores a
packet descriptor corresponding to the packet being pro-
cessed by the PPN 700, in an embodiment. Additionally, the
data memory 706 stores data generated for the packet during
processing of the packet by the network device 700, in an
embodiment. The data generated for the packet during
processing of the packet by the network device 100 is
subsequently used by the processing unit 702 for further
processing of the packet based on such data, in an embodi-
ment. For example, the data memory 706 stores results of
processing operations performed by accelerator engines 106
when the results are received by the PPN 700 from the
accelerator engines 106, in an embodiment.

The NAP 708 is configured to interface with the process-
ing unit 702 and with the EAP 600 to trigger accelerator
engines 106 for performing processing operations, with
respect to a packet, requested by the processing unit 702,
according to an embodiment. For example, when the pro-
cessing unit 702 initiates a transaction for a particular
processing operation, the NAP 708 sends an indication of the
particular processing operation to the EAP 600. The EAP
600 then accesses the profile table 610 using the indication
of the particular processing operation as an index into the
profile table 610, and generates a request for the particular
processing operation based on information retrieved from
the profile 610, in an embodiment. In effect, the processing
unit 702 offloads generation of the request for the processing
operation to the EAP 600, in an embodiment. In an embodi-
ment, the NAP 708 is also configured to receive results of
the processing operations performed by the accelerator
engines 106, and to provide the results to the processing unit
702.

In an embodiment, the NAP 708 includes the general
purpose anchors 516. In an embodiment, upon determining
protocol layer header locations in a packet, the processing

10

15

20

25

30

35

40

45

50

55

60

65

20

unit 702 updates values of the general purpose anchors 516
to indicate the determined header locations, as discussed
above with respect to FIG. 5. In an embodiment, the NAP
708 also includes the override profile fields 718. In an
embodiment, each of the profile override fields 718 con-
forms to the same format as the key segment field in the
profile table 610, such as, for example, the key segment field
350 of FIG. 3B or the key segment field 360 of FIG. 3C. The
processing unit 702 is configured to update values of the
override profile fields 718 to override one or more segments
of a key as discussed above with respect to the processing
unit 14 of FIG. 1, in some embodiments and scenarios.

FIG. 8 is a flow diagram of an example method 800 for
processing packets in a network device, according to an
embodiment. The method 800 is implemented by the net-
work device 10 of FIG. 1, in an embodiment. The method
800 is implemented by the network device 500 of FIG. 5, in
another embodiment. In other embodiments, the method 800
is implemented by other suitable network devices.

At block 802, a packet is parsed by a processing unit
executing computer readable instructions stored in a
memory. In an embodiment, the packet is parsed by the
processing unit 14 of the network device 10 of FIG. 1. In
another embodiment, the packet is parsed by the processing
unit 515 of the network device 500 of FIG. 5. In an
embodiment, block 802 includes blocks 804-808.

At block 804, one or more layers are identified within a
header of the packet. At block 806 respective locations of
protocol headers are identified. In an embodiment, the one or
more protocol headers correspond to the one or more
protocol layers identified at block 804. In an embodiment,
the a protocol layer at block 804 and/or a protocol layer
header location at block 806 is determined based on one or
more header fields in protocol layer header (or headers)
preceding the particular protocol layer header in the packet.
In an embodiment, an identified location of protocol header
corresponds to a beginning (e.g., a first byte) of the protocol
header.

At block 808, the one or more protocol header layer
locations are provided to a key generator block. In an
embodiment, providing the one or more protocol header
layer locations to the key generator block comprises updat-
ing, with indications of the one or more protocol header
layer locations, one or more general purpose anchors acces-
sible by the key generator block.

At block 810, a key for the packet is generated by the key
generator block. In an embodiment, the key for the packet is
generated at block 801 using the one or more protocol
header locations identified by the packet processing unit at
block 806. In an embodiment, block 810 includes blocks 812
and 814.

At block 812, one or more fields from a protocol layer
header are extracted. In an embodiment, the one or more
fields are extracted using the corresponding protocol layer
location, identified at block 806, to determine respective
locations of the one or more fields. In an embodiment, the
respective locations of the one or more fields are determined
based on respective predetermined offsets, corresponding to
the one or more fields, with respect to the identified location
(e.g., with respect to the first byte) of the protocol header. At
block 814, the key is generated to include the one or more
fields extracted at block 812.

At block 816, the key generated at block 312 is provided
to a lookup engine. For example, the key is provided to the
lookup engine 22 of the network device 10 of FIG. 1, in an
embodiment. The key is provided to an accelerator engine
506 of the network device 500 of FIG. 5, in another

US 9,479,620 B2

21

embodiment. In an embodiment, the key is included in a
request that is set to an accelerator engine 506 as part of a
transaction with the accelerator engine 106, in an embodi-
ment. In other embodiments, the key is provided to other
suitable engines. At block 818, a processing operation to be
performed with respect to the packet is determined by the
lookup engine based on the key generated at block 810.

In an embodiment, a method for processing packets in a
network device comprises parsing a packet by a program-
mable processing unit executing computer readable instruc-
tions stored in a non-transitory computer readable storage
medium. Parsing the packet includes identifying, by execut-
ing instructions stored in the non-transitory computer read-
able storage memory, one or more protocol layers within a
header of the packet, identifying, by executing instructions
stored in the non-transitory computer readable storage
memory, respective locations of protocol headers within the
header of the packet, the respective locations corresponding
to respective one or more identified protocol layers, and
providing the respective identified locations of protocol
headers within the header of the packet to a hardware key
generator block configured to generate one or more keys for
the packet based at least on information included in the
packet. The method further comprises generating, by the key
generator block and using the respective identified locations,
a lookup key corresponding to the packet. Generating the
lookup key includes extracting, using an identified location
of a protocol header, one or more fields from the corre-
sponding protocol header, and generating the lookup key to
include the one or more fields. The method additionally
comprises providing the lookup key to a lookup engine, and
performing, by the lookup engine and based on the lookup
key, a lookup operation with respect to the packet.

In other embodiments, the method includes any one of, or
any combination of one or more of, the following features.

Providing the respective identified locations to the key
generator block comprises updating values of respective
general purpose anchors, wherein the general purpose
anchors do not globally correspond to specific protocol
layers, and wherein a value of a general purpose anchor
indicates an offset of a particular protocol layer in the header
of the packet relative to a beginning of the packet.

The method further comprises subsequent to parsing the
packet, performing tunnel termination of the packet to
generate a tunnel-terminated packet, wherein performing
tunnel termination of the packet includes removing one or
more outer protocol layer headers from the packet;

The method further comprises parsing, by the processing
unit executing computer readable instructions stored in a
non-transitory computer readable storage medium, the tun-
nel-terminated packet, including identifying one or more
protocol layers within a header of the tunnel-terminated
packet, identifying respective locations of protocol headers
within the header of the tunnel-terminated packet, the
respective locations corresponding to respective one or more
identified protocol layers, and providing the respective iden-
tified locations of protocol headers within the header of the
tunnel-terminated packet to the key generator block.

Providing the respective identified locations of protocol
headers within the header of the tunnel-terminated packet to
the key generator block comprises updating values of the
respective general purpose anchors with values correspond-
ing to the tunnel-terminated packet.

Extracting, using the identified location of the protocol
header, a field from the corresponding protocol header
comprises determining a location of the field based on (i) the
value of the general purpose anchor indicative of the offset

10

15

20

25

30

35

40

45

50

55

60

22

of the particular protocol layer in the header of the packet
relative to the beginning of the packet and (ii) a predeter-
mined offset relative to the value of the general purpose
anchor.

Generating the lookup key comprises retrieving an entry
from a profile table, wherein the entry of the profile table
identifies one or more header fields to be extracted from the
header of the packet, the one or more header fields to be
included in respective one or more segments of the lookup
key, extracting the one or more header fields identified in the
entry in the profile table, and generating the lookup key to
include the one or more header fields.

Retrieving the entry from the profile table comprises
retrieving the entry from two of more rows of the profile
table, wherein each row of the two or more rows identifies
one or more header fields to be included in respective one or
more segments of the lookup key.

Each row, except for a last row, of the two or more rows
of'the entry includes an indication set to indicate that the row
is not the last row of the entry, the last row of the two or
more rows includes an indication to indicate that the row is
the last row of the entry.

Retrieving the entry comprises (i) retrieving a first row of
the entry, (ii) determining, based on the indication in the first
row, that the first row is not the last row of the entry, (iii)
retrieving a following row of the entry, (iv) determining,
based on the indication in the retrieved following row,
whether the following row is the last row of the entry, and
if it is determined that the following row is not the last row
of the entry, repeating steps (iii) and (iv) until it is deter-
mined that the retrieved following row is the last row of the
entry.

The method further comprises overriding, by the process-
ing unit, information identifying a new header field to be
included on the lookup key, and wherein generating the
lookup key comprises including the new header field in
place of a header field identified in the entry.

Providing the respective identified locations of protocol
headers within the header of the packet to the hardware key
generator block comprises providing the lookup key to a key
generator block implemented using one or more application-
specific integrated circuits.

In another embodiment, a network device comprises a
plurality of network ports configured to receive and to
transmit packets on a network. The network device also
comprises one or more packet processing nodes. The one or
more respectfully one or more packet processing nodes
respectively comprise a processing unit configured to
execute computer readable instructions stored in a non-
transitory computer readable medium and a hardware key
generator block coupled to the packet processing node. The
computer readable instructions stored in the non-transitory
computer readable medium, when executed by the process-
ing unit, cause the processing unit to parse a packet to
identify at least a first protocol layer within a header of the
packet, and identify a location, within the header of the
packet, of a protocol header corresponding to the first
protocol layer. The hardware key generator block is config-
ured to extract, using the identified location, one or more
header fields from the protocol header, and generate a
lookup key to include the one or more header fields. The
network device additionally comprises a lookup engine
coupled to the key generator block, the lookup engine
configured to perform, based on the lookup key, a lookup
operation on the packet.

US 9,479,620 B2

23

In other embodiments, the network device comprises any
one of, or any combination of one or more of, the following
features.

The one or more packet processing nodes are configured
to provide the respective identified locations to the respec-
tive key generator blocks at least by updating values of
respective general purpose anchors, wherein the general
purpose anchors do not globally correspond to specific
protocol layers, and wherein a value of a general purpose
anchor indicates an offset of a particular protocol layer in the
header of the packet relative to of a beginning of the packet.

The one or more packet processing node are configured to
subsequent to parsing the packet, perform tunnel termination
of the packet to generate a tunnel-terminated packet,
wherein performing tunnel termination of the packet
includes removing one or more outer protocol layer headers
from the packet.

The one or more packet processing node are configured to
parse the tunnel-terminated packet to identify one or more
protocol layers within a header of the tunnel-terminated
packet, identify respective locations of protocol headers
within the header of the tunnel-terminated packet, the
respective locations corresponding to respective one or more
identified protocol layers, and provide the respective iden-
tified locations of protocol headers within the header of the
tunnel-terminated packet to the respective key generator
blocks.

The one or more programmable packet processing nodes
are configured to provide the respective identified locations
of protocol headers within the header of the tunnel-termi-
nated packet to the respective key generator blocks at least
by updating values of the respective general purpose anchors
with values corresponding to the tunnel-terminated packet.

The key generator blocks is configured to determine a
location of a field to be extracted from a protocol layer
header based on (i) a value of the general purpose anchor
that indicates a location of the protocol layer header and (ii)
a predetermined offset relative to the value of the general
purpose anchor.

The key generator blocks is configured to retrieve an entry
from a profile table, wherein the entry of the profile table
identifies one or more header fields to be extracted from the
header of the packet, the one or more header fields to be
included in respective one or more segments of the lookup
key, extract the one or more header fields identified in the
entry in the profile table, and generate the lookup key to
include the one or more header fields.

The key generator blocks is configured to retrieve the
entry of the profile table by retrieving two of more rows of
the profile table, wherein each row of the two or more rows
identifies one or more header fields to be included in
respective one or more segments of the lookup key.

Each row, except for a last row, of the two or more rows
of'the entry includes an indication set to indicate that the row
is not the last row of the entry, the last row of the two or
more rows includes an indication to indicate that the row is
the last row of the entry,

The respective key generator blocks are configured to (i)
retrieve a first row of the entry, (ii) determine, based on the
indication in the first row, that the first row is not the last row
of the entry, (iii) retrieve a following row of the entry, (iv)
determine, based on the indication in the retrieved following
row, whether the following row is the last row of the entry,
and if it is determined that the following row is not the last
row of the entry, repeat steps (iii) and (iv) until it is
determined that the retrieved following row is the last row
of the entry.

10

15

20

25

30

35

40

45

50

55

60

65

24

The one or more programmable packet processing nodes
are further configured to override information identifying a
new header field to be included on the lookup key, and
wherein the key generator block is configured to generate
the lookup key to include the new header field in place of a
header field identified in the entry.

The respective key generator block are implemented
using respective one or more application-specific integrated
circuits.

At least some of the various blocks, operations, and
techniques described above may be implemented utilizing
hardware, a processor executing firmware instructions, a
processor executing software instructions, or any combina-
tion thereof. When implemented utilizing a processor
executing software or firmware instructions, the software or
firmware instructions may be stored in any computer read-
able medium or media such as a magnetic disk, an optical
disk, a RAM or ROM or flash memory, etc. The software or
firmware instructions may include machine readable instruc-
tions that, when executed by the processor, cause the pro-
cessor to perform various acts.

When implemented in hardware, the hardware may com-
prise one or more of discrete components, an integrated
circuit, an application-specific integrated circuit (ASIC), a
programmable logic device (PLD), etc.

While the present invention has been described with
reference to specific examples, which are intended to be
illustrative only and not to be limiting of the invention, it
will be apparent to those of ordinary skill in the art that
changes, additions and/or deletions may be made to the
disclosed embodiments without departing from the spirit and
scope of the invention.

What is claimed is:

1. A method for processing packets in a network device,
the method comprising:

parsing a packet by a programmable processing unit

executing computer readable instructions stored in a

non-transitory computer readable storage medium,

including

identifying, by executing instructions stored in the
non-transitory computer readable storage memory,
respective locations of protocol headers within a
header of the packet, the respective locations corre-
sponding to respective one or more protocol layers,
and

updating values of respective general purpose anchors
to indicate the respective locations of the protocol
headers, wherein the general purpose anchors do not
globally correspond to specific protocol layers;

generating, by a hardware key generator block and using

the updated values of the respective general purpose

anchors, a lookup key corresponding to the packet,

including

extracting, using an updated value of one of the general
purpose anchors, one or more fields from one of the
protocol headers, and

generating the lookup key to include the one or more
fields;

providing the lookup key to a lookup engine; and

performing, by the lookup engine and based on the lookup

key, a lookup operation with respect to the packet.

2. The method of claim 1, wherein a value of a general
purpose anchor indicates an offset of a particular protocol
layer in the header of the packet relative to a beginning of
the packet.

US 9,479,620 B2

25

3. The method of claim 2, further comprising:

subsequent to parsing the packet, performing tunnel ter-
mination of the packet to generate a tunnel-terminated
packet, wherein performing tunnel termination of the
packet includes removing one or more outer protocol
layer headers from the packet;

parsing, by the processing unit executing computer read-
able instructions stored in a non-transitory computer
readable storage medium, the tunnel-terminated packet,
including
identifying respective locations of protocol headers

within a header of the tunnel-terminated packet, the
respective locations corresponding to respective one
or more protocol layers, and

providing the respective identified locations of protocol
headers within the header of the tunnel-terminated
packet to the hardware key generator block.

4. The method of claim 3, wherein providing the respec-
tive identified locations of protocol headers within the
header of the tunnel-terminated packet to the hardware key
generator block comprises updating values of the respective
general purpose anchors with values corresponding to the
tunnel-terminated packet.

5. The method of claim 2, wherein extracting, using the
updated value of the one of the general purpose anchor, the
one or more fields from the one protocol header comprises
determining a location of a first field based on (i) the value
of the one general purpose anchor indicative of the offset of
the one protocol layer in the header of the packet relative to
the beginning of the packet and (ii) a predetermined offset
relative to the value of the one general purpose anchor.

6. The method of claim 1, wherein generating the lookup
key comprises:

retrieving an entry from a profile table, wherein the entry
of the profile table identifies one or more header fields
to be extracted from the header of the packet, the one
or more header fields to be included in respective one
or more segments of the lookup key,

extracting the one or more header fields identified in the
entry in the profile table, and

generating the lookup key to include the one or more
header fields.

7. The method of claim 6, wherein retrieving the entry
from the profile table comprises retrieving the entry from
two of more rows of the profile table, wherein each row of
the two or more rows identifies one or more header fields to
be included in respective one or more segments of the
lookup key.

8. The method of claim 7, wherein each row, except for a
last row, of the two or more rows of the entry includes an
indication set to indicate that the row is not the last row of
the entry, the last row of the two or more rows includes an
indication to indicate that the row is the last row of the entry,
and wherein retrieving the entry comprises

(1) retrieving a first row of the entry,

(ii) determining, based on the indication in the first row,
that the first row is not the last row of the entry,

(iii) retrieving a following row of the entry,

(iv) determining, based on the indication in the retrieved
following row, whether the following row is the last
row of the entry, and

if it is determined that the following row is not the last row
of the entry, repeating steps (iii) and (iv) until it is
determined that the retrieved following row is the last
row of the entry.

9. The method of claim 6, further comprising overriding,

by the processing unit, information identifying a new header

25

30

35

40

45

55

65

26

field to be included in the lookup key, and wherein gener-
ating the lookup key comprises including the new header
field in place of a header field identified in the entry.

10. The method of claim 1, wherein generating, by the
hardware key generator block, the lookup key comprises
generating the lookup key using one or more application-
specific integrated circuits.

11. A network device, comprising:

a plurality of network ports configured to receive and to

transmit packets on a network;

one or more packet processing nodes respectfully com-

prising
a processing unit configured to execute computer read-
able computer readable instructions stored in a non-
transitory computer readable medium that, when
executed by the processing unit, cause the processing
unit to parse a packet to:
identify a location, within a header of the packet, of
a protocol header corresponding to a first protocol
layer, and
update a value of a general purpose anchor to indi-
cate the location of the protocol header, wherein
the general purpose anchor does not globally
correspond to any specific protocol layer; and
a hardware key generator block coupled to the packet
processing node, the hardware key generator block
configured to
extract, using the updated value of the general pur-
pose anchor, one or more header fields from the
protocol header, and
generate a lookup key to include the one or more
header fields, and
a lookup engine coupled to the hardware key generator
block, the lookup engine configured to perform, based
on the lookup key, a lookup operation on the packet.

12. The network device of claim 11, wherein the value of
the general purpose anchor indicates an offset of the protocol
header in the header of the packet relative to a beginning of
the packet.

13. The network device of claim 11, wherein the one or
more packet processing node are configured to:

subsequent to parsing the packet, perform tunnel termi-

nation of the packet to generate a tunnel-terminated
packet, wherein performing tunnel termination of the
packet includes removing one or more outer protocol
layer headers from the packet;

parse the tunnel-terminated packet to

identify respective locations of protocol headers within
the header of the tunnel-terminated packet, the
respective locations corresponding to respective one
or more identified protocol layers, and

provide the respective identified locations of protocol

headers within the header of the tunnel-terminated
packet to the hardware key generator block.

14. The network device of claim 13, wherein the one or
more programmable packet processing nodes are configured
to provide the respective identified locations of protocol
headers within the header of the tunnel-terminated packet to
the hardware key generator block at least by updating values
of respective general purpose anchors with values corre-
sponding to the tunnel-terminated packet.

15. The network device of claim 11, wherein the hardware
key generator block is configured to determine a location of
a first field to be extracted from the protocol header based on
(1) the value of the general purpose anchor which indicates
a location of the protocol header and (ii) a predetermined
offset relative to the value of the general purpose anchor.

US 9,479,620 B2

27

16. The network device of claim 11, wherein the hardware
key generator block is configured to:

retrieve an entry from a profile table, wherein the entry of

the profile table identifies one or more header fields to
be extracted from the header of the packet, the one or
more header fields to be included in respective one or
more segments of the lookup key,

extract the one or more header fields identified in the entry

in the profile table, and

generate the lookup key to include the one or more header

fields.

17. The network device of claim 16, wherein the hardware
key generator block is configured to retrieve the entry of the
profile table by retrieving two of more rows of the profile
table, wherein each row of the two or more rows identifies
one or more header fields to be included in respective one or
more segments of the lookup key.

18. The network device of claim 17, wherein each row,
except for a last row, of the two or more rows of the entry
includes an indication set to indicate that the row is not the
last row of the entry, the last row of the two or more rows
includes an indication to indicate that the row is the last row
of the entry, and wherein the hardware key generator block
is configured to

28

(i) retrieve a first row of the entry,

(i) determine, based on the indication in the first row, that
the first row is not the last row of the entry,

(iii) retrieve a following row of the entry,

(iv) determine, based on the indication in the retrieved
following row, whether the following row is the last
row of the entry, and

if it is determined that the following row is not the last row
of the entry, repeat steps (iii) and (iv) until it is
determined that the retrieved following row is the last
row of the entry.

19. The network device of claim 16, wherein the one or
more programmable packet processing nodes are further
configured to override information identifying a new header
field to be included in the lookup key, and wherein the
hardware key generator block is configured to generate the
lookup key to include the new header field in place of a
header field identified in the entry.

20. The network device of claim 11, wherein the hardware
key generator block is implemented using one or more
application-specific integrated circuits.

#* #* #* #* #*

